
ADVANCED MANNED SPACE FLIGHT
SIMULATION AND TRAINING

AN INVESTIGATION OF SIMULATION HOST
COMPUTER SYSTEM CONCEPTS

Grant No. NAG9-394
SwRI Project 05-3050

Prepared for:
Simulator/Training Systems Development

National Aeronautics and Space Administration
Johnson Space Center

Houston, Texas

10 November 1989

SOUTHYVEST
SAN ANTONIO

RESEARCH INSTITUTE
HOUSTON

INVESTIGATIC!N OF SPULATIQ% HOST C ~ M P U T E R
SYSTEM CONCEPTS F i n a l Technical R e p o r t

(5outhwest Research I n s t .) 3-3 p t S C t 149 C 3 / 1 4 0 2 3 9 2 5 7
unclas

Southwest Research Institute
Post Office Drawer 28510,6220 CuIebra Road

San Antonio, Texas 78228-0510

ADVANCED MANNED SPACE FLIGHT
SIMULATION AND TRAINING

AN INVESTIGATION OF SIMULATION HOST
COMPUTER SYSTEM CONCEPTS

Grant No. NAG9-394
SwRI Project 05-3050

Prepared by:
Bruce C. Montag
Alfred M. Bishop
Joe B. Redfield

Prepared for:
Simulator/Training Systems Development

National Aeronautics and Space Administration
Johnson Space Center

Houston, Texas

10 November 1989

Approved:

&A
Curtis Heinen, Director
Training Systems and Simulators Department

Executive Summary

/

Manned space flight crew training is on5 of the most challenging and computer intensive
The computing power required to create a applications for real-time simulation techFdogy.

convincing artificial reality r mission training and flight software verification has
traditionally pushed the state real-time computing, often exceeding the capabilities of
commercially available cases, custom one-of-a-kind simulation solutions have
been utilized for space the limitations of commercially available computing
systems. The that many powerful simulation
technologies

Institute (SwRI) in simulation host computer
simulation technologies for use in spaceflight training. The focus of the investigation is on the next
generation of space simulation systems that will be utilized in training personnel for Space Station
Freedom operations.

computer intensiy simulatio challenge3thal must be dolved th ough the u k o>fficient, effektive,
and enduring simulation solutionS, It imo longer necess& d e s i r a b l e to a b q t expensive, unique
solutions to $ace flight simulation problems.

SwRI conclude 'that NASA should pursue a distributed simulation host compuEr system
architecture for the & rather than a centralized mainframe based arrangement. A distributed
system offers many advantages and is seen by SwRI as the only architecture that will allow NASA
to achieve established functional goals and operational objectives over the life of the Space Station
Freedom program.

I' a t i s r epor t presents the findings of a

The p lann2 G k t i o n Training F a c h y - (SSTF) pro$s&offer many significht,

5[@L& / / , - - / 7 6 a - p f P P C J y I L ' f - 5 7) P p - f - - - - - - ~ ~ @ ~ = - G-

Several distributed, parallel computing systems are available today that offer real-time
capabilities for time critical, man-in-the-loop simulation. These stems are flexible in terms of

computing power. New technologies for tightly coupling -el processors allow distributed
architectures to provide main frame class computing power without any of the problems associated
with developing, maintaining, and upgrading main frames for real-time applications.

connectivity and configurability, and are easily scaled to / eet increasing demands for more

New trends in the development of real-time Ada applications also suggest that industry
standards and practices are emerging that promise to eliminate the need for custom, nonstandard
Ada implementations in real-time environments. These trends should be researched in further detail,
so that the benefits of new real-time Ada developments may be best exploited to achieve the
established SSTF functional goals and objectives.

In addition, it is recommended that further research be performed in investigating SSTF
simulation challenges and the best application of enabling simulation technologies. Identification and
planning for these challenges will aid in the process of translating the SSTF concept into an enduring
training system design. The following is a list of candidate areas that SwRI recommends for further
research:

- Automation & Robotics Simulation
-Investigation of Robotic Sensor Simulation Issues
-Investigation of Embedded Training Issues

-Investigation of CAD/Visual Scene Database Correlation Issues
-Investigation of Visual and Tactile Correlation Issues

- Robotics/Visual System Requirements

- Embedded Avionics
-Investigation of Avionics Simulation Requirements
-Investigation of Simulate vs. Stimulate Issues
-Investigation of Knowledge Based System Simulation Issues

-Crew Vehicle Interface
-Front-End Analysis of Crew Training Needs

- SSTF Concept Development
-Investigation of Real-Time Ada Directions
-Identification of Real-Time CASE Requirements
-Investigation of Real-Time Operating Systems
-Investigation of Processor Communication Issues

Focused research addressing technical issues in each of these areas is needed to identify, plan
for, and reduce risks associated with SSTF concept development. Early warning of space station
simulation challenges and identification of candidate technical solutions will better enable future
manned space flight simulation facilities to become economical, maintainable, supportable, and
instructionally effective training systems.

..
11

Table of Contents

1.0 Introduction ...
1.1 Document Background .
1.2 Document Purpose .
1.3 Document Overview .

2.0 SSTF Concept Definition ..
2.1 IntegralDMS Role .
2.3 Single Family of Computers ...
2.4 SSE Engineering Model Incorporation .
2.6 Computer Resource Requirements

2.2 S/W Standardization .

2.5 Training Modes .

3.0 SSTF Concept Rationale .
3.1 Decrease Reliance on Custom Simulation Solutions
3.2 Provide Realistic System Responses for Mission Rehearsal
3.3 Provide Environment for Training Freedom Station Ground/Space Team

4.0 SSTF Systems Simulation Challenges for Concept Development
4.1 Concurrent/Independent Crew Training .

Crew Vehicle Interface Challenges .
4.3 Embedded Space Systems Simulation Challenges

4.3.1 Embedded Avionics Systems Architecture
4.3.2 Embedded Knowledge Based Systems/Autonomous Systems
4.3.3 Robotics Technology/Telerobotics

Predictive Display & Control .
4.3.3.2 CAD/CAE Correlated Sensory Perception

4.2
.

4.3.3.1

5.0 Enabling Simulation Technologies .
5.1 Conceptual Technologies .

5.1.1 Modular Simulation Concepts .
5.1.2 Distributed Processing for Modular Simulation .
5.1.3 Integrated Environmental Modeling .

5.2 Architectural Technologies .
5.2.1 Loosely Coupled Networking .

5.2.1.1 Ethernet .
5.2.1.2 Token Ring .
5.2.1.3 VME Bus and Multibus II .
5.2.1.4 Real-Time Networks .

5.2.2 Tightly Coupled Memory Linkage .
5.2.2.1 Broadcast Memory .
5.2.2.2 Shared Memory .
5.2.2.3 Crossbar Memory .

5.2.3 Processor Selection .
5.2.3.1 Processor Architectures .
5.2.3.2 Data Flow Machines .
5.2.3.3 Parallel Processing .

5.2.4 Reliability and Maintainability .
5.3 Software Technologies .

5.3.1 Real-time Ada .

1
1
1
1

3
3
3
3
4
4
4

5
5
5
6

7
7
7
8
8

11
11
13
13

15
15
15
16
18
18
22
23
24
24
25
25
26
26
26
30
30
30
31
31
32
32

...
1U

5.3.2 Operating System Functions . 33
5.3.3 Ada Programming Support Environments 33

5.3.3.1 Simulation Oriented CASE . 33
5.3.3.2 Real-time Debugging Tools 34

5.4 Processing Technologies . 34
5.4.1 Symbolic Computing . 34
5.4.2 Vision Computing . 35

5.5 Visual System Technologies . 35
5.5.1 Digital Image Generation . 35
5.5.2 Digital Image Processing . 36

6.0 Concept Objectives and Technology Assessment . 38
6.1 SSTF Computing Objectives . 38
6.2 Architecture Assessment . 39

Appendix A References . A1

iv

List of Figures

Figure 4-1 Aerospace Avionics Architecture . 9

12
17

Figure4-2 GN&C/DMSArchitecture . 10
Figure 4-3 Robotics/DMS Integration .
Figure 5-1 Space Station Modular Simulation Concept .
Figure 5-2 Simulation Computer System . 19
Figure 5-3 Integrated Environmental Modeling Concept . 20
Figure 5-4 Operational Computer System Concept . 21
Figure 5-5 Typical LAN Topologies . 23

Figure 5-8 Typical Shared Memory Configuration

Figure56 FDDITokenRing . 24
Figure 5-7 m i c a 1 Broadcast Memory Configuration . 27

. 28
Figure 5-9 Typical Crossbar Memory Configuration . 29
Figure 5-10 Robotics/Visual System Integration . 37

V

Lit of Abbreviations

AJPO
APSE

ANSI

ARTEWG

C&T

CAD
CAE

CASE

COTS
CPU
CSMA/CD

CVI
DIG
DMS
ECLSS

EPS
EVA
FDDI

FMS
F W
ITS
GDB
GFE

GN&C

IEEE

I/O
JPL
JSC
KB
KBS
LAN
Mb/s
MB/s
MCC
MDM
M m

Ada Joint Program Office
Ada Programming Support

Environment
American National

Standards Institute
Ada Real-time

Environment Working
Group

Communication and
Tracking

Computer Aided Design
Computer Aided

Engineering
Computer Aided Software

Engineering
Commercial Off-the-shelf
Central Processing Unit
Carrier Sense Multiple

Access with Collision
Avoidance Detection

Crew Vehicle Interface
Digital Image Generator
Data Management System
Environmental Control and

Life Support System
Electrical Power System
Extravehicular Activity
Fiber Distributed Data

Interface
Fluid Management System
Flight Software
Flight Telerobotic Servicer
Global Database
Government Furnished

Equipment
Guidance Navigation &

Control
Institute of Electrical and

Electronic Engineers
Inpu t/Ou tpu t
Jet Propulsion Laboratory
Johnson Space Center
Knowledge-Base
Knowledge-Based System
Local Area Network
Megabit per Second
Megabyte per Second
Mission Control Center
Multiplexer/Demultiplexer
Military

MIPS

MPAC

NASA

NASREM

NST
OADP

occ
ORU
os
SDP
SIB
SMTF

SPOT

sscc
SSE

SSP
sssc
SSTF

STD
STE

STS

S W R I

TCS
TDRS

TERPROM
TDM
VME

VSDB

Million Instructions Per
Second

Multipurpose Applications
Console

National Aeronautics and
Space Administration

NASA Standard Reference
Model for Telerobt
Control System
Architecture

Node Systems Trainer
Operations Automatic Data

Operation Computer

Orbital Replacement Unit
Operating System
Standard Data Processor
Simulation Interface Buffer
Shuttle Mission Training

Facility
Space Proximity Operations

Trainer
Space Station Control

Center
Software Support

Environment
Space Station Program
Space Station Support
Center
Space Station Training

Standard
Student Training

Space Transportation

Southwest Research

Thermal Control System
Tracking & Data Relay

Terrain Profile Matching
Time Data Multiplexing
VERSAbus-E (Motorola

Visual Scene Data Base

Processing

Complex

Facility

Environment

System

Institute

Satellite

bus interface standard)

vi

1.0 Introduction

Manned space flight simulation requirements place a heavy demand on real-time computer
resources and have historically exceeded the capabilities provided by commercially available systems.
Southwest Research Institute (SwlU), in investigating the technical issues associated with host
simulation computer systems applicable for manned space Eght simulation, has elected to focus this
research on the needs of Space Station Freedom oriented simulation.

1.1 Document Background

Future astronauts, scientists, mission specialists, and ground support personnel assigned for
Space Station Freedom operations will learn the hands-on specifics of their job tasks within the Space
Station Training Facility (SSTF) at the Johnson Space Center (JSC) in Houston, Texas. The SSTF
will provide a simulated near real-world environment sufficient for conducting mission rehearsal
training for entire flight crews, verifying candidate flight software loads, and instructing personnel in
the detailed operation of space systems.

The SSTF is planned to become one of the most sophisticated man-in-the-loop simulation
facilities ever developed. Many advanced simulation challenges are to be expected in developing the
SSTF concept due to the scope and breadth of the overall training problem and the high technology
content of planned embedded space systems. Successful concept implementation will rest in large
part on the ability of SSTF planners and decision makers to forecast these challenges, and
accommodate them in the SSTF concept as it evolves.

1.2 Document Purpose

The purpose of this document is to address one of the most critical areas in the concept
development of the SSTF environment. This area is the host simulation computer resources that will
serve as the backbone of the SSTF student training environment. Conceptual planning for the host
computer complex must give consideration to potential simulation challenges and technological issues
associated with the future direction of real-time simulation computing. Information is provided in
this document at a high level and covers a broad scope. This approach provides an overview of
potential simulation problems and candidate solutions so that they may be identified and investigated
in further detail.

1 3 Document Overview

This document describes a preliminary SwRI investigation of technical issues surrounding the
host Simulation computer resources and the potential simulation challenges that can be expected in
developing the SSTF concept. During the period of investigation, over sixty technical reports and
publications have been reviewed, and suppliers of state-of-the-art real-time simulation capable
computers were interviewed in order to achieve a firm understanding of the technical issues
associated with the definition of the SSTF host simulation computing needs.

The information presented in this document is divided into six sections and one appendix.
Section 1 provides the background purpose and overview of the document. Section 2 provides a brief
review of key development concepts that lay the foundation for the SSTF design. Section 3 identifies
the rationale behind the development concept in terms of the functional goals and objectives that
NASA has established for the SSTF. Section 4 discusses potential simulation challenges and how
these challenges affect the host computer resources concept. Section 5 is review of state-of-the-art
simulation technologies that are candidates for implementation in the SSTF host simulation computer
system design. Finally, Section 6 assesses the technical issues and potential effectiveness of these

1

enabling simulation technologies to meet anticipated simulation challenges and attain the established
SSTF goals and objectives. The appendix contains a Listing of the reference technical reports and
publications used as a basis for this study.

2

2.0 SSTF Concept Definition

The SSTF will be the primary training facility for instructing crew members, ground support
personnel and space station customers in the operation of on-orbit systems. The Simulation and
Training Environment (STE) will support real-time, man-in-the loop operation of embedded core
space station systems, mission specific payloads, and free-flying space vehicles. Several functional
and operational goals concerning life cycle cost, system reliability, configuration supportability, and
training utility have been identified for development of the SSTF concept. To facilitate achievement
of these goals, several SSTF development ground rules have been established. These ground rules
involve the incorporation of Data Management System (DMS) flight software, standardization of
simulation software, computer system compatibility (a single family of computers), reuse of available
software (engineering models), and flexible training modes.

2.1 Integral DMS Role

The on-board space station operational management system and associated avionics, otherwise
known as the DMS, will be stimulated within the SSTF to allow for realistic mission rehearsal and
provide a near real-world environment for the verification of flight software. This capability will be
provided through the integration of a government furnished equipment (GFE) "DMS kit" within the
SSTF simulation environment. The DMS kit consists of a functional shipset of Standard Data
Processors (SDPs) that execute space station €light software, and a Simulation Interface Buffer (SIB)
that allows the SDPs to be functionally and physically stimulated by a host simulation computer.
Flight equivalent rather than flight qualified SDPs will be utilized within the DMS kit. These SDPs
will execute the same unmodified flight software that will be utilized in the space station.

2.2 S / W Standardization

The SSTF is one of the many customers of the Software Support Environment (SSE)
contractor that provides a common Ada Programming Support Environment (APSE) for all space
station related software development. The SSE establishes the tools and rules for software
standardization across the Space Station Program (SSP). The SSE will also serve as a software
repository for SSP simulation software developed by the C/D Workpackage prime contractors. The
SSTF concept calls for heavy use of SSE software to minimize the need for SSTF unique software
development. Commercial off-the-shelf (COTS) software will be utilized to the greatest extent
possible (i.e. operating systems and support software) to enable the SSTF configuration to be as
flexible and as supportable as possible, without reliance upon any single source for maintenance and
reconfiguration.

2 3 Single Family of Computers

The SSTF concept also calls for participation where applicable in the Operations Automatic
Data Processing (OADP) plan that will establish a single family of computers for mission operations
support. The intent of this plan is to establish computer system commonality among the various
mission operations elements such as the Shuttle Mission Training Facility (SMTF), Space Station
Support Center (SSSC), Mission Control Center (MCC) and the SSTF. The current OADP concept
includes minimal considerations for the special real-time simulation needs of the SSTF. In general,
the OADP packaged system requirements address real-time capabilities as an "upgrade" option,
which does not currently reflect industry practice. As discussed in Section 5.2, real-time simulation
computers must be designed from the ground up with much consideration given to bus design,
processor integration, and operating system control to assure that real-time simulation performance
is deterministic (ie. predictable, repeatable, and adhering to strict timing requirements), fault
tolerant, and easily scalable to accommodate expanding simulation requirements. Data processing
systems not originally designed for real-time operation do not typically serve well in the real-time

3

role due to inherent architectural deficiencies and the need for custom solutions for real-time
simulation appiica tions.

2.4 SSE Engineering Model Incorporation

A key element in the SSTF concept is the incorporation of engineering software simulation
models for each space station system. Defined systems are: Guidance Navigation and Control
(GN&C) system, Electrical Power System (EPS), Thermal Control System (TCS), Environmental
Control and Life Support System (ECLSS), Communication and Tracking (C&T) system, Fluid
Management System (FMS), the propulsion system, robotic manipulators, payloads, international
partner elements, free-flyer systems, and extra vehicular activity (EVA) system. These models,
developed by the C/D workpackage prime contractors and maintained by the SSE, will be modified
for real-time training simulation usage and will execute within the simulation host computer.

2.5 Training Modes

Several training modes of operation will be supported by the SSTF simulation environment.
These modes include up to two simultaneous stand-alone part-task training sessions, combined
systems training among two or more crew environments, integrated training that includes the Space
Station Control Center (SSCC), and joint-integrated training sessions that include participation by
other external-to-JSC simulations.

2.6 Computer Resource Requirements

The space station simulation environment is expected to become one of the most complex
man-in-the-loop simulation systems ever developed, surpassing the Space Shuttle Mission Simulator
in terms of processing throughput, training scenario complexity, and instructional system demands.
The National Aeronautics and Space Administration (NASA) has estimated that the SSTF will
require in the neighborhood of 3 million executable lines of code and over 150 million instructions
per second (MIPS) of processing power to provide a convincing artificial reality for rehearsing on-
orbit operations. These requirements are expected to expand as the station’s core system capabilities
and customer payloads become more sophisticated and incorporate an increasing level of automation
and robotics technologies.

4

3.0 SSTF Concept Rationale

The SSTF concept rationale is intended as a foundation for the design of a training facility
that provides for the achievement of certain functional goals and operational objectives dealing with
system reliability, instructional effectiveness, and efficient utilization of facility resources. A three-
part strategy is apparent in the establishment of the SSTF ground rules. The first part concerns
the huge expense involved in maintaining custom developmental hardware and software.
Development, purchase, and maintenance of computer software currently accounts for over 20% of
the NASA budget each year. In addition, 10% of the total NASA budget is spent on writing new
software. Due to the software intensive nature of the space station, these allocations are expected
to skyrocket as development progresses. NASA wishes to control this trend during SSTF
development by minimizing the need for custom simulation solutions that may prove expensive to
support. The second part of the concept rationale is to ensure that a near real-world simulation
environment exists in the SSTF. This will provide mission development and verification activities
with a high degree of confidence in the expected on-orbit performance. The third part of the strategy
deals with the need to train the entire Freedom Station Mission Support Team as a single unit for
highly transferrable and effective training sessions. The following sections discuss each of these three
strategies in further detail.

3.1 Decrease Reliance on Custom Simulation Solutions

Space flight simulation during the Apollo, Skylab, and Space Transportation System (STS)
eras relied mostly on custom simulation solutions that were necessary to support the demanding
training requirements associated with manned space flight operations. Space flight simulation is one
of the most difficult types of simulation, requiring huge amounts of computer processing power to
adequately support the safety critical aspects of manned space flight. Commercial support of real-
time simulation resources did not exist during previous space flight simulation development efforts,
and unique solutions were innovated so that the training problem could be effectively solved.
Although technically effective, these custom solutions were difficult and expensive to support,
maintain, reconfigure, and modify as new mission requirements were identified. In the past five
years many changes have occurred in the real-time simulation industry. The size of the industry
has nearly tripled and is currently estimated to be worth over $2.5 billion. As a direct result, a
variety of real-time simulation capable computers and associated software are becoming commercially
available to meet the demand for simulation and training systems. Industry standards and practices
are beginning to emerge that promote the use of open architectures for real-time applications.
Custom, one-of-a-kind, proprietary simulation solutions are no longer necessary or desirable. NASA
is therefore intending to develop the SSTF with as high a content as possible of commercially
available real-time simulation resources. NASA also wishes to minimize the need for developmental
software by capitalizing on other SSP software applications that can be effectively reused with
minimum modifications in the SSTF. This is a basis for the incorporation of SSE maintained
engineering software models of Freedom Station systems.

3.2 Provide Realistic System Responses for Mission Rehearsal

The need to verify flight software and effectively train personnel for mission operations is
a basis for the ground rule to incorporate DMS flight equivalent hardware and unmodified flight
software. It is expected that by incorporating the actual flight software, mission to mission
reconfiguration can be accommodated quickly, and a high level of system fidelity can be assured.

5

3 3 Provide Environment for Training Freedom Station Ground/Space Team

The SSTF will also be the center of training for all SSP participants. To accommodate the
wide variety of training needs required by astronauts, scientists, mission operations specialists, and
ground support personnel, the SSTF concept provides for many different modes of training
operations. The rationale for these modes is to ensure that the SSTF resources may be flexibly
configured to adequate@ provide for the training needs of all SSP participants.

6

4.0 SSTF Systems Simulation Challenges for Concept Development

The high degree of technological sophistication envisioned for the Freedom Station promises
to present many interesting and challenging systems simulation requirements. These simulation
challenges must be identified and planned for during the system requirements phase to minimize the
number of potential surprises that may arise during the SSTF development cycle. Three of these
technically challenging advanced simulation needs are discussed in the following sections. These
SSTF simulation challenges are: provisions for concurrent yet independent SSTF training sessions,
contextually rich display and control systems for crew/vehicle interfacing, and the stimulation of
multi-layered, embedded avionics systems for highly realistic, on-orbit operations training.

4.1 Concurrent/Independent Crew Training

The initial SSTF concept supported up to five simultaneous training sessions utilizing the
Operational Computer Complex (OCC). As a result of the scrub effort, this requirement has been
reduced to two simultaneous SSTF training sessions, with provisions for the future accommodation
of additional sessions. A training session is considered to be the crew operation of a flight
environment training device such as a Node Systems Trainer (NST) or the Station Proximity
Operations Trainer (SPOT). During stand-alone operation, each trainer is individually configured
to support part-task training objectives. These concurrent yet independent training sessions will allow
several crew members to simultaneously interact with and focus on the operation of a single
embedded system such as the GN&C, TCS, or EPS in separate mission/trainer specific situations.
For example, NST #1 could be configured for instructing crew members in the operation of the
GN&C system, while NST #4 could be configured for TCS related operation. The separate crews
would then train in the NSTs simultaneously, without the other NST affecting the particular training
session. The individual flight environment trainers may also be configured to support combined,
integrated, or joint integrated training sessions to provide varying degrees of ground/space team
coordinated mission training.

Configuring the OCC in a hardware efficient manner to provide for multiple, simultaneous
yet separate training sessions is a significant simulation challenge. The operation of each trainer is
required to be completely independent and free of interaction with other training sessions. If one
trainer should experience a hardware or software failure, the other training session(s) should not be
affected. These requirements lead to a multicomputer configuration, due to the need for physical
partitioning in order to meet the operational trainer performance objectives. Specific technical issues
associated with stand-alone vs. combined trainer operation include multiple SIB communications,
functional allocation of simulation hardware and software, and run-time executive distribution.
Several architectural technologies discussed in Section 5 hold promise for meeting the technical
challenges posed by the multiple yet independent/concurrent training problem.

4.2 Crew Vehicle Interface Challenges

The sophisticated display and control features planned for the Multi-Purpose Applications
Consoles (MPACs) present another simulation challenge for effective crew training. Several types
of MPACs (fixed, portable, etc.) will be utilized on board Freedom Station. The display and control
capabilities provided by the W A C are contextually rich, offering provisions for multiple high
resolution (High Definition Television type) visual displays featuring color 3-D graphics and
pan/scroll/zoom, voice recognition capability, and force sensing/reflecting hand controllers. To aid
in robotic operations, the MPAC may also feature aural/tactile cues for signaling critical situational
information (i.e. when load limits are exceeded on manipulator joints or when end effector contact
is achieved). The MPAC is the crew members’ interface into the inner (and outer) workings of the
Station. Through use of an MPAC, the crew member will have the power to: control the station’s

7

orbit; solve embedded systems operating problems; monitor and control the flight of co-orbiting
vehicles within the station's control zone; and install, orient, operate, and service payloads.

A key training objective is to adequately model the richness of the Freedom Station
operating environment within the SSTF to promote the direct transfer of training from ground to
orbit. Sophisticated simulation techniques are needed for synthetic image generation and
environmental modeling to provide a convincing artificial reality that is effective for transferring
lessons learned from the SSTF to on board operations. Successful training of time critical, man-in-
the-loop operating scenarios depends upon the ability of the SSTF to accurately cue the crew
member. Example scenarios include reboosting the station orbit, maneuvering the station for thermal
control, proximity operations control of multiple vehicles, and robotic manipulator operation.
Effective flight safety and emergency procedure training in the SSTF will rest upon the training
system's ability to replicate the sensory environment and the physical factors associated with critical
condition Freedom Station scenarios. The cognitive perception and response patterns developed by
crew members in training should be directly applicable to space operations, without the crew having
to "relearn" new patterns in space to overcome the deficiencies of their ground based training. The
key Crew Vehicle Interface (CVI) simulation challenge therefore, is to adequately define and
configure the SSTF simulation systems in terms of training capabilities so that all anticipated training
needs may be easily accommodated as the development progresses.

4 3 Embedded Space Systems Simulation Challenges

The Congressionally mandated initiative to integrate automation and robotics technology into
the Freedom Station design presents many significant challenges for the implementation of the SSTF
concept. Embedded expert systems, autonomously operating systems, adaptive control structures, on
line intelligent tutors, and teleoperated robotic systems serve as examples of the type of technologies
that are planned for space station incorporation. The SSTF concept definition must plan to
accommodate the space station hooks and scars that will allow these technologies to be integrated
into on-orbit operation. The real-time computer complex configuration concept should be considered
with these technologies in mind to avoid unwanted surprises during SSTF development.

43.1 Embedded Avionics Systems Architecture

The DMS architecture provides a multi-layered communication structure for interfacing
embedded avionics systems with the core station information system. The DMS architecture is
designed to be avionics application independent, so that a variety of systems, sensors, and control
effectors may be accommodated as the station development progresses. This is a challenging
structure for time critical, man-in-the-loop simulation due to the separation and allocation of
functions between DMS layers. Current aerospace avionics architectures are typically single layer
configurations, with multiple busses providing the system to system connectivity, as shown in Figure
4-1. Avionic systems are tightly coupled in that they utilize compatible clock cycle speeds (i.e. 50 Hz,
25 Hz, etc.) and use extensive time tagging of data items to ensure functional synchronization
between the individual avionics tasks. In current simulator architectures, avionic system elements
that are centralized and perform CW critical functions are typically stimulated within the simulator
training device. Other avionic system elements are functionally simulated at the level of resolution
necessary to feed the stimulated elements with realistic flight data. Theoretically, this approach
provides for realistic mission oriented training, and also reduces new software development
requirements for providing mission specific trainer configurations.

Figure 4-2 shows an example of the multilayered DMS architecture applied to the GN&C
system. The upper layer consists of the supervisory and management functions that are allocated to
the SDPs. The bottom layer consists of the distributed subsystems and sensors that make up the
GN&C avionics suite. The bottom layer also feeds sensed and conditioned data to the upper layer,

8

AVIONIC ARCHITECTURE

Figure 4-1
Aerospace Avionics Architecture

9

FDDl Global Network

NIU I 1 NIU I

I %mor interface

Moment
Gyros

Inertial
Sensors

Figure 4-2
GN&C/DMS Architecture

10

where it is transformed into information for communication to the crew or to other space station
systems, This division of functions between layers provides for loose coupling between the
supervisory layer and the real-time control layer. Upper layer elements are interconnected via a
global network consisting of a 100 megabits/second (Mb/s) token ring bus conforming to the Fiber
Distributed Data Interface (FDDI) standard, while lower layer elements communicate with the upper
layer via a 1 Mb/s local mux bus. The loose coupling approach offers the potential for application
dependent clock cycle speeds within the lower layer, which may present synchronization problems.
For example, an embedded imaging sensor/processor may run at video speeds, while an embedded
rotary joint processor may be required to run at a different speed that is derived from a dynamic
stability analysis. Automation and adaptive control technologies applied to the upper layer do not
present as much of a simulation problem due to the incorporation of flight equivalent SDPs running
FSW within the SSTF.

Advanced automation technologies, such as imaging machine vision type sensors and
knowledge based controllers wiU call for trade-offs to be made as to the method for providing the
functionality of the embedded system in the SSTF. Alternatives are to either Functionally Simulate
the embedded system within the host computer, Stimulate flight equivalent hardware executing the
embedded system software, or Emulate the embedded system on special purpose COTS hardware.

43.2 Embedded Knowledge Based Systems/Autonomous Systems

Autonomous or knowledge based systems (KBS) embedded within the lower layer of the DMS
architecture may present special simulation problems. Implementation of these systems currently
requires special purpose processors that perform symbolic computing operations. Functional
simulation of expert systems is a relatively uncharted territory due to the limited scope and small
number of KBS systems that have been incorporated into production aerospace vehicles. SSTF
accommodation of these technologies may require that flight equivalent symbolic processors be
stimulated to ensure representative embedded system performance. Stimulation of these processors
would in turn put special requirements on the host based environment simulation model. The
environment model would be required to provide for all of the scenarios programmed into the KBS
world database for contingency training in mission operations. Heuristic behavior of the KBS would
also need to be accounted for by the environmental model.

4 3 3 Robotics Technology/Telerobotics

Simulation of advanced telerobotics operation may be the most challenging SSTF simulation
problem. The goal of the automation and robotics initiative is to help relieve the Freedom Station
crew from many of the demanding EVA and time intensive operations associated with station
assembly and maintenance. To facilitate meeting this objective, hooks and scars are being
incorporated in the station design to accommodate automation capabilities as they become available.
Anticipated Freedom Station automation and robotics capabilities will utilize machine intelligence,
sensory aided perception, and advanced man-machine interfaces. The robotics technologies planned
for incorporation in Freedom Station pose several potentially formidable simulation challenges,
particularly in the visual system area.

A flexible robot control structure has been identified for utilization in the Flight Telerobotic
Servicer (FB) and other Freedom Station robotic systems. This scheme, known as the NASA
Standard Reference Model for Telerobot Control System Architecture (NASREM) provides for
varying levels of system autonomy and operator control regarding manipulator operations. Figure
4-3 indicates how the NASREM hierarchy would map into the DMS architecture in terms of system
interfaces and levels of operator/manipulator interaction. The NASREM architecture provides for
operator control over robotic operations via job oriented task commands (“remove & replace Orbital
Replacement Unit (ORU) #2 in forward service bay”), object oriented E-move commands (“move

11

Contact
Conirol

Task Comand

Awareness

Monitorin 1

12

<object> from <source> to <destination>"), or by manual control of arm and end effector
movements. To accomplish these operations safely and effectively, the operator will need extensive
real-time queuing of the task situation. The operator must be able to accurately perceive what is
happening, make cognitive decisions concerning the task process, and effect control over the task
situation. Advanced display and control technologies are planned for aiding the operator in utilizing
the NASREM configured robotic system, from within the station and from ground based controller
workstations. The following sections discuss several technologies associated with robotics
technologies that are challenging for SSTF simulation. These include predictive display and control,
and Computer Aided Design (CAD) / Computer Aided Engineering (CAE) correlated sensory
perception.

433.1 Predictive Display & Control

Remote operation of space based robotic manipulators from a ground based workstation is
a difficult technical challenge due to the inherent time delay in the round trip transmission of data
from earth to space. Delays of as much as 2 seconds are anticipated for ground based manipulator
control loops transmitted to the station via the Tracking and Data Relay Satellite System (TDRS)
geosynchronous relays. Research at the Jet Propulsion Lab (JPL) has indicated that control loop
delays above 500 ms cause manipulator operators to fall into a move and wait strategy for
accomplishing task objectives, resulting in very poor task performance. To overcome the time delay
problem, research in predictive display and control technologies is being performed to increase the
effectiveness of teleoperated control schemes. By executing a macro simulation of the robotic system
within the ground based workstation in response to input commands, a real-time display can be
generated that predicts the behavior of the space based manipulator. Researchers at JPL believe that
by coupling this predictive simulation with CAD/CAE data regarding the object being remotely
manipulated, a total manipulator/object signature can be computed in real-time that is sufficient to
drive interactive 3-D graphics displays with correlated force feedback signals for the hand controllers.
The CAD data would provide the spatial geometry and physical characteristics data needed to
determine when end effector contact is achieved. The CAE data will allow the computation of the
inertial response of the object to a given input force. Real-time sensor data from the manipulator
in space would then be overlaid with the virtual graphics display to provide operator overall
awareness of the task situation. This predictive display and control technology, in addition to
providing a solution to the ground control time delay problem, could also be utilized on board
Freedom Station to provide an embedded training capability that would permit crew members to
remain proficient at robotic operations, without having to exercise the actual robotic equipment.

4.33.2 CAD/CAE Correlated Sensory Perception

Autonomous robotic operation at the NASREM task or E-move level requires that the
manipulator be capable of "seeing" and "feeling" its way throughout the performance of the task.
Research is currently being performed in the integration of visual imaging sensors and laser range
fiiders with CADjCAE databases to increase the robots' ability to maintain situational awareness
of the task space. By correlating real-time task imagery and ranging data with the CAD/CAE
database, the manipulator will be able to navigate through the task space with a higher degree of
confidence than if driven by sensor data alone. This concept is analogous to the Terrain Profile
Matching (TERPROM) approach for passive terrain avoidance utilized in some tactical fighter
aircraft. By correlating radar altimeter readings and periodic position fixes with an on board digital
map of the route being flown, the TERPROM equipped aircraft is able to anticipate and react to
terrain contours and hazardous obstacles along the aircraft's flight path. The correlation of on board
data with sensor data will allow the robotic manipulator to anticipate collisions or unsafe operating
conditions in a manner similar to that of the TERPROM navigation system. This technology
presents a challenging simulation task for the SSTF. If the CAD/CAE correlation is mechanized
within the upper layer of the DMS environment (Le. within the SDPs), then the Visual Scene

13

Database (VSDB) will need to be directly correlated with the Freedom Station CAD database to
ensure realistic training scenarios. If the mechanization occurs in the bottom DMS layer (within
an embedded processor), then other alternatives may be available, dependent upon whether the
embedded processor is stimulated or functionally simulated. Correlation of the visual scene with the
robot flight software is a challenging simulation task, because simulator VSDB’s descriptors for man-
made objects (i.e. aircraft, vehicles, etc..) are typically entered into the database through manual
modeling techniques. The resolution of these models is also typically very loose. VSDB/CAD
correlation will require precise matching of the visual database models with the CAD object
descriptions. This correlation will be particularly critical if pattern recognition flight software is
executed within the SSTF. Automatic generation of visual scene database models based on CAD
data would be an ideal solution to this problem,

14

5.0 Enabling Simulation Technologies

Development of the SSTF concept will call for many decisions to be made regarding concept
implementation. Many challenging simulation problems are anticipated in implementing the SSTF
concept that must be solved by effective, efficient, and enduring technical approaches. It is in
NASA’s best interest to seek an SSTF architecture that offers maximum flexibility, scalability, and
adaptability to change. Pursuit of these implementation objectives will better position the training
facility for accommodating new missions, new on-orbit technologies, and new user requirements over
the anticipated life of the Space Station Freedom program. The information in the following sections
is offered to SSTF planners and decision makers as a broad look at the most critical technical issues
surrounding SSTF concept implementation.

Several enabling simulation technologies hold promise for answering the challenges posed by
the variety of simulation problems anticipated for the SSTF. These include conceptual technologies
that offer life cycle advantages through modular systems definition techniques, architectural
technologies that provide flexible and adaptable system configurations, software technologies that
support the architectural technologies, processing technologies that allow simulation of advanced
automated systems, and visual system technologies that, in conjunction with the architectural and
software technologies, provide an overall integrated training environment for highly transferrable
crew training. The pursuit and application of these technologies may better enable the SSTF to
weather the evolutionary changes which challenge the initial system design. But these technologies
must not be taken at face value. Many technical issues and considerations must be accounted for
when implementing a given technology. The following discussions are directed at uncovering some
of these issues, so that they may be more closely examined in further detail.

5.1 Conceptual Technologies

Several new trends in simulation system definition offer distinct advantages over traditional
methods in the design of complex, multi-crew training systems like the SSTF. These concepts help
assure that training simulation devices are designed as modular, expandable, and flexible systems.
Application of these conceptual technologies in the SSTF design process will allow the SSTF
configuration to accommodate hooks and scars necessary to provide training support for evolution-
ary automation and robotics technologies, minimize the potential problems involved in integrating
with the SMTF, accommodate a variety of diverse payload technologies, and ease the tasks associated
with mission-to-mission reconfiguration. Technologies that play a key role in this front-end system
engineering process include modular simulation concepts, distributed processing concepts that support
modular simulation, and the concept of integrated environmental modeling. These goals can be
achieved through the application of front-end systems engineering analysis which categorize and
quantify the simulation system’s logical, physical, and functional processes.

5.1.1 Modular Simulation Concepts

The concept of modular simulation focuses on reducing the complexity of simulator systems
by logically and physically compartmentalizing the design into independent, well defined subsystems.
It is a building block approach that describes the overall simulation problem in terms of separable
tasks. These tasks are then allocated to functional simulation entities with well-defined interfaces
and internal processes. The functional process is then allocated to physical hardware and software
components. The modular design approach is based on fundamental systems engineering principles
that are applied specifically to configure real-time simulation systems. Adherence to these principles
provides clear development paths and provides for graceful growth capabilities as the simulation
requirements are expanded.

15

The front-end systems engineering approach is intended to prevent the integration,
maintenance, and upgrade problems experienced with simulation and training systems currently in
the field. Industry standard practice has been to settle on the physical design of the simulation
system prior to the identification of the overall tasks and functional processes that the system needs
to perform to support achievement of training system objectives. It is very important to consider the
evolutionary requirements of the simulation system early in the system conceptualization process.
History has shown that centering a training system design around specific computer equipment or
proprietary software components can be very problematic in terms of life cycle cost, system
expandability, and flexibility in meeting new requirements. By dividing the logical simulation
processes based on interface considerations and separating them from the physical environment, a
system configuration can be established that is easy to understand, implement, and m o d e . Figure
5-1 shows an example of how space station system simulation requirements can be logically allocated
to simulation processes. Each process within the simulation environment performs a function
required to meet training requirements. Once each process is defined in terms of functions and
logical interfaces, the process may be easily allocated to hardware and software.

Real-time system oriented Computer Aided Software Engineering (CASE) concepts are
emerging that support the principles of modularity in the systems definition process. These tools will
allow the system designer to identify processes which are inherently parallel, process timing
synchronization requirements, and data flow considerations early in the design phase. This capability
allows system designs to be configured that specify and optimize the best physical computer resources
needed to perform the simulation task. CASE concepts for real-time simulation are discussed further
in Section 5.3. The modular simulation approach offers an alternative to the myriad of problems
caused by the premature selection of specific computer systems prior to complete system
requirements identification.

5.1.2 Distributed Processing for Modular Simulation

Distributed processing concepts involve allocating simulation functions to individual processor
environments. A processor environment can be thought of as a collection of individual computing
units that are grouped to allow collective processor-to-processor communications. Each computing
unit contains a CPU, local memory, and 1/0 capability. Computing units are interconnected via an
inter-node link to form an integrated computing node that is managed by a node controller.
Computing nodes are connected by an intra-node link to form a distributed computing system. The
distributed processing approach divides the overall computation load into independent processes that
may be performed in parallel. Individual node controllers allow the computer resources to easily be
configured to support specific applications. A distributed architecture can be dynamically configured
to support independent applications (part task training) or a single massive application (combined
training). This approach has numerous advantages over the single virtual machine approach
commonly used for real-time simulation.

The single computer approach is typically represented by a master central processing unit
(CPU) and several slave CPUs that communicate with each other through shared memory. This
configuration performs as a single virtual machine since only one CPU may access shared memory
at a time, resulting in a serial execution environment. This approach is also not very scalable in
terms of processing power expandability, since only a fixed number of CPU’s may share the
computer’s main bus, and only the master CPU is capable of handling I/O. To overcome these
limitations, the simulation industry is developing distributed processing concepts that support the
principles of modular simulation and provide flexible, scalable computer resources. The distributed
processors may be interconnected through either loosely coupled networks or tightly coupled memory
linkages. Issues associated with each of these interconnection methods are discussed in Section 5.2.

16

Flight Hardwarelsoftware
r

Simulation Environment
DMS

EPS

Propulsion

IW

FMS

Propulsion
GNC
C&T

Figure 5-1
Space Station Modular Simulation Concept

17

Figure 5-2 describes the differences between the typical simulator computer system and the
distributed simulation system. The monolithic approach typically centers around a proprietary
internal bus and is designed to support centralized, local applications that are easily handled by a
single computer. The distributed approach relies upon grouping computing unit to form computing
nodes. The key to the distributed architecture is the processor-to-processor linkage (intra-node bus
and inter-node bus). Several technologies discussed in section 5.2 allow independent processors to
communicate reliably and predictably at real-time speeds. The computing units may be easily
interconnected and sized to form computing nodes that support dynamic, large scale applications that
often cannot be handled by any one computer.

The strength of the distributed processing approach is that each individual computing node
may be uniquely sized to match the simulation process that has been allocated to it. As the
simulation requirements expand and mature, additional nodes can be added or easily re-sized to
accommodate the requirements. In addition, the simulation system configuration is better able to
support advanced simulation requirements by matching process to processor. The distributed
approach also provides a growth path for computer technology migration. As more capable real-
time processors emerge, they may be swapped for existing processors without seriously impacting the
simulation functional allocation.

5.13 Integrated Environmental Modeling

Integrated environmental modeling refers to a centralized approach to simulating external
processes. An example of an external process is the characteristic behavior of the earth as a planet.
A corresponding internal process would be the sensing of an earth attribute by an embedded space
station system. The concept of integrated environmental modeling focuses on the definition of a
unified environment that may be sensed in a consistent manner, independent of the sensor type. The
concept is illustrated in Figure 5-3. In the non-integrated approach, each sensor models its own
world, totally independent of other sensors and other environmental effects. Non-integrated
environmental models are difficult to understand and maintain, and may result in inconsistent cues
to the crew. Integrating the environmental model as a separate simulation function ensures that all
cues conveyed to the crew will be correlated and provides for the modular incorporation of new
sensors as they become available.

5.2 Architectural Technologies

Advanced computer architectures offer flexible alternatives for meeting the demanding and
evolutionary simulation requirements posed by the SSTF. The concept objective is to configure a
real-time Simulation environment that can evolve and grow gracefully as the space station training
and operating requirements expand to include new missions, payloads, and embedded system
capabilities. The core computing resources utilized within the SSTF must be based on architec-
tural technologies that have a bright and predictable future, offer a clearly defined growth path to
accommodate increasing performance requirements, and promise to be fully supported now and in
the future by the commercial computer industry. Figure 5-4 identifies the current operational
computer system concept in terms of functional interfaces and SSTF connectivity required to support
multiple, concurrent and independent training sessions. Many technical issues must be considered
in determining the configuration for implementing the host simulation computer system concept.

The information presented in this section is designed to provide decision support for the
assessment of candidate architectures that are capable of fulfilling the real-time computer resource
requirements of the SSTF. The architectural technologies considered for analysis here are important
to the current and future trends in real-time simulation oriented computing systems. These
technologies have been grouped according to the method utilized to implement the specific capability

18

DISTRIBUTED SIMULATION COMPUTER ARCHITECTURE

Computing Node #2

Inter-node

Computing Node #l

CU= Computing Unit - Function Card, Single Board Computer. ...
NC- Node Controller

E
X
T
E
R
N
A
L

C
0
N
N
E
C
T
I
V
I
T
Y

lYPlCAL MONOLITHIC SIMULATION COMPUTER ARCHITECTURE

SHARED MEMORY

Fi" 5-2
Simulation Computer System

19

- Sensor correlation Is not guaranteed

- Each sensor models its own "world"

- No consistency among external
environment effects

I

INlEGRATED ENVIRONMENTAL MODELING APPROACH

Integratd

Environment
InerUd Elkc(r

0ptic.t

obit eeanemy

- Ensures Sensor Correlation

- Modular environment Interface easily
accommodates new sensors

I ~

Figure 5-3
Integrated Environmental Modeling Concept

20

W.l I Proceaaora

Real Time

Computer

Resources

F i v 5-4
Operational Computer System Concept

M
P
0
C

L
A
N

EZZZ

e

z

-

21

that the technology offers. These groups are: loosely coupled networking methods, tightly coupled
memory linkage methods, and processor selection. A number of issues are presented for evaluating
each of these technology areas.

The SSTF is characterized by a diverse set of computing needs representing a wide range of
real-time and batch requirements. In addition, the integrated SSTF must provide connectivity to
several other training devices to fully implement training goals (i.e. the Shuttle Mission Training
Facility-SMTF, Neutral Buoyancy Lab, Mission Control Center, etc..). The need for a modem Local
Area Network (LAN) is clear but there are a number of issues which determine their effectiveness
in a given situation. In a complex computer system containing several local computing nodes with
requirements for the various nodes to communicate with each other, the system should be analyzed
on at least two levels: the tightly-coupled, local level and the loosely-coupled, global level.

There are several important issues associated with selection of a communication method when
dealing with real-time applications: scalability, error detection and recovery, overhead, and
performance. Scalability deals with issues of flexibility and the ease of expansion to accommodate
changing communications requirements. This is one of the most critical features needed by a
complex system with unknown growth needs such as the SSTF. Performance issues are significant
because communication speed will affect frame processing time when the processes are distributed
over a network. Determinism (of message propagation time) is also a critical performance issue.

To date, a front-end training analysis has not been performed to determine precise training
objectives and curriculum for the SSTF. In order to size the communication requirements of a
complex system, one must be able to estimate the peak data communications rates for each
communications path using average message size, message density, system overhead and bandwidth,
These estimates will not be possible for SSTF until design options and the training requirements are
stabilized. This makes the selection of scalable and open standard architectures a most important
factor.

52.1 Loosely Coupled Networking

Loosely coupled networking schemes allow dissimilar processors to communicate with one
another according to a standard interface protocol. This protocol can be separated into physical and
logical layers of communication such as defined by the International Standards Organization (ISO)
Open Systems Interconnect (OSI) standard for use in LANs, or by integrated protocols such as VME
bus and MultBus that standardize the signal lines and interface modules required for processor-to-
processor communication. VME bus interfaces also offer a means of tightly coupling processors and
devices on a one-to-one basis.

LANs are used to connect a number of computer systems (global) for the purpose of sharing
or exchanging data. Data is organized into messages or message packets for transmission, with the
transmission speed being dependent on the type of physical transmission line used. For example, a
twisted-pair wire can transmit up to 1 Mb/s, while thin or thick coaxial wire can attain rates above
10 Mb/s, and fiber optics cables can extend into the gigabit per second range.

There are several popular LANs which have received wide industry support and are formally
documented by various international standards organizations. Loose coupling through LANs is
characterized by the transfer of message packets, flexible configuration options, and the ease with
which nodes with different vendors’ products can be connected. Processors of varying architectures
and capabilities that accept the LAN protocol can be connected over fairly large distances (one to
two Km) and repeaters are available which increase these limits. They tend to be very scalable but
can have dramatic performance degradation when overloaded.

22

Communications for complex distributed real-time systems must form the backbone upon
which predictable, stable, scalable system solutions are built. To be successful, the real-time
communications must be able to predictably satisfy individual message level timing requirements.
In a nonreal-time setting, it is sufficient to verify the logical correctness of the communication;
however, in a real-time setting it is also necessary to verify timing correctness. Timing correctness
refers to ensuring the ability to schedule synchronous and sporadic messages as well as ensuring that
the response time requirements of asynchronous messages are met. Ethernet, for example, has very
low predictability of message transmission and arrival times because of the unpredictable increase
of message collisions and retransmission as the network loading increases.

TREE

Each computing node is connected to the LAN by interface modules which implement a
protocol: the rules which determine the format, speed, and addressing for data traversing the LAN.
Computing nodes can be connected to LANs in a variety of ways: rings, stars, trees, busses, and other
topologies as shown in Figure 5-5.

STAR

R I N G
S t a t i o n s

I

Modes > S t a t i o n s

Figure 5-5
Typical LAN Topologies

52.1.1 Ethemet

Ethernet (IEEE 802.3 standard), is a 10 Mb/s coaxial cable bus using baseband modulation
and implementing a "carrier sense multiple access with collision avoidance detection" (CSMA/CD)
protocol in hardware. Ethernet has very low predictability of message transmission and arrival times
because of the unpredictable increase of message collisions and retransmission as the network
loading increases. These collisions have been shown to be exponentially increasing with respect to
bus loading and can begin to have an effect at relatively low loading levels (about 20%). It is a very
scalable network, but its use is questionable where high speed, deterministic, hard deadline
communications are required.

23

5.2.12 Token Ring

The Fiber Distributed Data Interface (FDDI) fiber optic cable being considered for the
Freedom Station global network provides relatively inexpensive connectivity with transmission rates
of 100 Mb/s and sustained transfer rates of 80 Mbjs. FDDI (ANSI ASC X3T9.5 standard) is a
counter-rotating double ring token passing arrangement, as shown in Figure 5-6.

Token bus and token ring networks have a somewhat better deterministic performance than
other LAN structures and are very scalable. Priority schemes, built into the token’s data structure,
allow message priority to be easily implemented. Heavy loading and turn-taking (resulting from
token passing) are effectively handled by this priority system. The current network trend is toward
increased use of Time Domain Multiplexing (TDM) implemented by a cyclical executive such as the
token-passing scheme within FDDI. Research has shown that as the number of independent
communicating tasks increases, the uncertainty of message timing also increases. Also, reliability and
availability issues are driving systems to become increasingly reconfimrable, which exacerbates the
problem of determinism. The problem of non-deterministic networks is currently the focus of
scheduling theory research activities and it seems that currently available products are not particularly
well suited (theoretically) to the task.

Figure 5-6
FDDI Token Ring

52.13 W E Bus and Multibus III

VMEbus and Multibus II are standard parallel busses which have popular support as local
network interfaces. Each has a maximum bandwidth of about 40 MB/s (megabytes per sec) but have
very different operational philosophies. Both are capable of processor independence, allowing
computers from different manufacturers running at different clock speeds to operate on the same
bus. Multibus has gained considerable favor in industrial automation applications while VMEbus has
a larger installed base and is more popular in scientific real-time applications. Either bus would be
a satisfactory interface for localized communications within the SSTF.

24

Multibus I1 uses a message-passing protocol. Message packets contain source and destination
addresses as well as several bytes which can be used to describe up to 255 virtual interrupt sources
or destinations. The message passing is usually handled by a special coprocessor rather than the
board's main computer and eliminates the need for dual ported memory. Multibus I1 is synchro-
nous and multiplexed which (according to some authorities) provides higher reliability. Multibus
cards must synchronize to the bus clock rate of 10 Mhz for transmission, and if a clock edge is
missed, a wait state of 100 nsec is needed to catch the next clock pulse, potentially degrading
performance. Bus arbitration is distributed among several "bus masters" who arbitrate for bus
services based on a prioritized ID assigned by a central services module.

VMEbus is asynchronous and non-multiplexed, using seven prioritized hardware interrupt
lines to apportion tasks among multiprocessors. The asynchronous bus allows each processor in a
multiprocessor system to transfer data at its fastest possible rate. VMEbus' arbitration method is
"centralized" in that one global arbiter board, slot one of the card cage, handles bus-access requests
over dedicated, daisy-chained bus-request and bus-grant lines to the other boards' requester circuitry.
VMEbus allows four priority levels and three modes: prioritized, round robin, and single level.
Prioritized arbitration assigns the bus to the board driving the highest priority bus-request line. In
round robin, the arbiter assigns access on a rotation priority basis, from highest to lowest. Single
level arbitration serves only one priority, relying on the daisy-chained bus-grant lines to determine
the order in which boards get access to the bus.

5.2.1.4 Real-Time Networks

Network communication schemes are beginning to emerge that provide deterministic message
passing communications between dissimilar processors. One real-time network supplier (SYSTRAN)
offers an innovative approach known as the Shared Common Random Access Memory Network
(SCRAMNet) that combines the benefits of tightly coupled shared memory linkages with the open
system flexibility provided through loosely coupled communications methods. The SCMMNet
system consists of a set of host interface cards connected by fiber optic cable. The host interface
cards plug in to standard card slots provided for computer interfaces such as 9U sized VME,
MultiBus 11, and Q-Bus. Memory located on the interface card is mapped into the host computer's
memory, and data changes to this memory area are detected and transmitted to the other network
nodes. This approach tends to eliminate unnecessary bus traffic. By not implementing complex
message passing protocols, and through use of fiber optic cable, SCRAMNet is able to achieve
message transmission times of less than 7 microseconds over distances exceeding 700 meters. The
major limitation of the SCRAMNet scheme is that currently, only 512 K bytes of shared memory can
be supported between network nodes. Current SCRAMNet applications utilize between 2 and 10
network nodes.

52.2 Tightly Coupled Memory Linkage

Processor-to-processor communications utilizing tightly coupled memory linkage methods
allow compatible processors to almost instantaneously transmit and receive data. The tightly coupled
memory linkage method avoids the need for data format and protocol compliance by promoting
direct memory-to-memory read and write capability. There are many very fast vendor-proprietary
bus structures available that perform very well on that vendor's equipment. They are often limited
to a short total length (up to a few hundred feet) with speeds of 20-50 MB/s.

Use of proprietary interconnect busses is f i e for use within a localized (functional)
computing node for distributed processing (intra-node) as long as it can grow to meet the localized
functional need. However, all localized computing nodes which require widespread communications
within the SSTF (internode) should also support interfaces which have an open system architecture.
These open architectures are those which are backed by industry standards organizations (e.g. ANSI,

25

IEEE) and have received wide support from the computer manufacturing industry and third party
suppliers.

5.2.2.1 Broadcast Memoly

The broadcast memory method for tightly coupled processor communications involves the
broadcasting of shared memory areas between all processors accessing a common bus. Whenever
a processor writes to a location in its copy of shared memory, the bus then "reflects" this memory
area to all other processors accessing this same shared memory region. This approach eliminates the
bottleneck caused by multiple processors attempting to access a central shared memory area.
Multiple broadcast memory buses can be utilized to form a matrix of computing nodes capable of
tightly coupled communication.

Encore/Gould offers an innovative Reflective Memory design in their Concept 32/2000
product line. In addition to a high speed local memory bus and an external Sel BUS, the reflective
memory bus allows write-only memory updating to all connected processors over an electrically
passive bus. The currently available reflective memory bus has a 26.6 MB/s bandwidth, but the
bandwidth will be doubled by product enhancements planned for 1990. Electrically, the reflective
memory bus connects to local memory through the CPU card but does not impact CPU performance.
Up to eight processors can be connected by the reflective memory bus, and in turn, each of the eight
processors can, by a multi-drop connection, reflect memory to another string of eight processors,
forming an 8x8 matrix of processors connected by reflective memory as illustrated in Figure 5-7.
Reflective memory is very deterministic with a worst-case propagation delay of about one-half
microsecond. Additional hardware lines offer cross-coupled interrupts among processors for timing
synchronization.

5.2.2.2 Shared Memory

Shared memory is the traditional simulator architecture that uses a memory bank to which
several processors can read or write, as illustrated in Figure 5-8. Key variables, which are of interest
to more than one processor, are assigned to this common memory. This is a common technique
found in many of today's simulators. Information transfers are fast because no packing, formatting
or message software is involved, although some wait states are likely when memory contentions
occur. Scalability of shared memory systems is limited and they are usually proprietary to a
particular vendor. As the number of attached processors increases, the longer each must wait to be
granted a memory access. Typically, all processors must be in close proximity to the shared memory
resource, and complicated software semaphores must be used to ensure coherent data access. Shared
memory can also be a single point of failure within the system.

53.23 Crossbar Memory

Crossbar memory is a linkage technique that utilizes a separate bus for each interconnected
processor, so that each processor has a direct communication path to every other processor, as
illustrated in Figure 5-9. The crossbar approach provides for a very scalable architecture, with
constant memory access times independent of the number of interconnected processors. Both 1/0
and processing can be performed in parallel.

Bolt Beranek and Newman, Inc. offers an innovative crossbar memory system known as the
TC200 System which uses a "Butterfly switch" to provide efficient and transparent access by each
processor to all locations in memory, whether local to a processor, remote on another processor, or
external on a disk or tape. Every processor is connected to the switch via an 80 MB/s, 32 bit Tbus.
The switch paths are eight bits wide and provide 38 MB/s bandwidth and allow multiple remote
memory accesses to occur in parallel. The switch is also modular, providing an additional 38 MB/s

26

I Refledive Memow Bus I

0
0
0
0
0

0
0
0
0
0

0

0
0
cl

CI
0
0-

0
0
0

0
0

Figure 5-7
Typical Broadcast Memory Configuration

27

f
Main Bus

4

Figure 5-8
Typical Shared Memory Configuration

c

I I10 Bus I

28

I
Motorola 88100 CPU

Memory
(16 ME)

88200 MMU 88200 MML
(Instructions: (Data)

I
+

Tbus

VMEBus +4

I Function Card Layout Interface -

-
V
M
E

E
U
S

-

Function
Card #64

29

in communications bandwidth with the addition of each cluster of eight processors. The architecture
is very scalable and supports up to 64 parallel processors, with growth capability to accommodate up
to 504 processors.

5.23 Processor Selection

Today, computer system designers have a wide variety of processors (CPUs or board-level
products) from which to choose. Some of the CPU designs are commercial products with open (i.e.
non-proprietary) and well-documented features, while others are considered proprietary by the
computer manufacturer. In today’s market, where the total life span of a CPU is less than 8 years,
chip designers and system integrators are very careful at the onset of a new product design to build
in an orderly grow path for the product. Proprietary CPUs are designed with a particular market
or application niche in mind and frequently offer a speed advantage in that area when compared
tochips designed for wide distribution. The availability of software is generally better for systems
based on standard designs although proprietary designs are well supported in the target application
area by the manufacturer through intemal development and arrangements with third party OEM
software houses.

5.23.1 Processor Architectures

The majority of today’s computer architectures are based on the classical von Neumann
scheme. This paradigm includes a global addressable memory which holds both program and data
objects, and a program counter which holds the address of the next instruction to be executed. The
program counter is implicitly updated by machine instructions to provide the machine with a
sequence of instructions to execute, implying a single locus of control, a fundamental bottleneck of
the von Neumann model for parallel processing.

The most serious problem with any form of memory sharing in a multiprocessor machine is
the underlying execution model, which implies a global, updatable object-oriented memory. It is
common for processors to compete for the right to updqe a memory location. The program
fragments, which execute in parallel and share data, must be synchronized by operations such as test-
and-set, semaphores, or message-based primitives which require considerable overhead and reduce
performance. There are other fundamentally different schemes which are beginning to show success
in certain application areas, some of which are necessary to fulfill the diverse computing
requirements of SSTF. These are discussed in following sections.

5.23.2 Data Flow Machines

Data flow machines deal only with values and not addresses (of values). The basic operators
produce a value which is used by other operators. The model has no instruction counter: an
instruction is enabled in and only if all the required input values have been computed. Enabled
instructions consume input values, execute, and produce sets of output values which are sent to other
instructions that need these values. An instruction in data flow has no other side effects, and a
language based on data flow concepts does not introduce sequencing other than the ones imposed
by data dependencies in the algorithm. In principle, it is possible to expose all of the parallelism in
a data flow program.

Using this concept, it is possible to develop very powerful and deterministic real-time
processes known as event-driven execution. Software modules are only scheduled for execution when
a module input changes, thus signalling the algorithm to compute a new output value(s). This
removes the system from the high overhead burdens of continuous polling schemes to detect when
a module requires execution.

30

5.233 Parallel Processing

Multiprocessing is a platform architecture strategy in which two or more processors perform
as one integrated system. True parallel processing is achievable on such an architecture and is
characterized by:

e A high speed memory bus to a shared memory area. Since all processors are typically
in the same equipment rack, the bus is physically short and can provide high
bandwidth.

A shared 1/0 bus allowing all processors access to a common set of peripheral
equipment.

e An operating system which dispatches tasks from a central dispatch queue to
processors in an available processor pool without bottlenecks associated with
master/slave relationships. All processors are available for all jobs. The classical task
of load balancing real-time tasks is eliminated.

A scalable configuration, capable of easily accommodating additional processors.

Language compilers must be capable of identifying and exploiting the parallelism inherent in
applications, splitting the identified code segments into "parallelized" packets. There are some cases
in which execution order of subroutines or packets is extremely important. For example, in
aerodynamic models it is critical that velocity and acceleration components be calculated from data
collected within the current data frame. The system must have some means of assuring that tasks
will execute within a required timing window and that tasks dependent on results of other tasks'
calculations observe the proper dependency relationships. At the present time, the compilers and
toolkits required for production quality parallel processing environments are still evolving and it may
be some time before they are found in wide use.

5.2.4 Reliability and Maintainability

The architecture of the computer system plays an important role in determining the
availability (fault tolerance) of the computer resources for operations and the speed with which
problems may be isolated so that the system may be repaired and returned to operational status.
Reliability and maintainability issues are key items for consideration in the SSTF host computer
complex concept because of the high level of system availability required to support crew training.

Computer system designs that rely upon a centralized mainframe type architecture are
susceptible to loss of operational capability when a key component (such as the shared memory) fails.
Although the probability of a critical failure occurring is small due to the minimum complexity of the
mainframe architecture, when a failure does occur it usually brings down the system due to the high
degree of component integration.

A distributed multi-computer architecture exhibits greater complexity than the centralized
architecture due to the greater number of components that make up the distributed computer system.
Even though expected reliability is reduced due to the greater number of system components, system
availability of the distributed architecture can be greater due to the inherent advantages of the
functional process distribution. The distributed approach allows for the allocation of spare computing
units within each computing system node. Since each computing unit is under software control of
the node controller, a high degree of configuration flexibility is provided. If a failure occurs that
results in the loss of a computing unit, the node controller can easily reassign a spare computing unit

31

to perform the functions of the failed unit. Similarly, a spare node controller can be assigned the
functions of a failed node controller. A failed computing unit or node controller can be electrically
switched out and quickly repaired or replaced without affecting the overall operation of the computer
system. This capability is made possible through the use of passive inter-node and intra-node
communication links. Passive transmission methods (i.e. fiber optic cable) allow the failed computing
unit to be bypassed on the inter-node bus without affecting the remaining computing units within the
node. The capability to semi-automatically recover from system faults without impacting the
operation of the total system allows the distributed multi-computer approach to exhibit high levels
of availability, even though the architecture is complex.

5 3 Software Technologies

Emerging software technologies are becoming commercially available that support the
architectural technologies discussed in Section 5.2. These new technologies, centered around industry
standards for programming languages, operating systems and the interaction between the two, offer
the promise of solving many of the costly operations and maintenance problems related to the use
of complex, customized, and often proprietary simulation solutions that are in current field use. To
bring these promises to practice, though, many technical issues associated with these software
technologies must be identified and addressed. Successful SSTF computer complex concept
implementation will require careful planning with regard to the impact of these issues on the chosen
computer system hardware/software configuration. The following discussion is intended to provide
a high level overview of important issues associated with Ada language simulation environments, Ada
compatible real-time operating systems, and real-time simulation development tools.

53.1 Real-time Ada

Several deficiencies have been identified by industry regarding the ability of ANSI/MTL-
STD-1815A compliant Ada to perform in hard real-time application environments. These
deficiencies include the inability of Ada to support explicit task scheduling, dynamic task
prioritization, task blocking, or strict time slice management. Other known problems are caused by
nondeterministic real-time interrupt handling via task rendezvous entries, and the possibility of task
priority inversion due to the way in which Ada handles task synchronization. These problems have
resulted in several different approaches undertaken by industry to allow the Ada language to be
utilized effectively in hard real-time applications.

One approach taken by Ada vendors (DDC-I) is to provide source code changes that support
hard scheduling along with their validated Ada compiler. This approach is characteristic of the "make
Ada work now" method that suppliers have pursued to meet the demand for real-time Ada. This
approach is not acceptable in many circumstances because it violates the Ada standard and requires
that a special waiver be granted by the government sponsor. This method results in Ada software
that is not portable and does not conform to the established standard.

Another path to a real-time Ada environment offered by industry is that of a real-time
Operating System (OS) kernel that is custom tailored to support ANSI/MTL-STD-l815A without
modifications. The OS overcomes the known Ada deficiencies by implementing real-time executive
functions through packaged interfaces to the Ada language. The Ada tasking model is not utilized.
This approach allows run-time simulation functions such as time slice management, inter-process
communication, and dynamic process prioritization. This approach may be unacceptable due to the
custom nature of and lack of standardization among operating systems that offer these capabilities.
Another deficiency is that a standard does not currently exist for the OS to Ada language interface.

32

In response to these issues and the difficulty experienced within industry in developing real-
time Ada systems, the Ada Joint Program Office (-0) is pursuing a revision to ANSI/MIL-STD-
1815A to include incorporation of real-time environment features. This initiative, known as the Ada
9X program, seeks to resolve known problems by offering run-time extensions to the language in a
way that will minimize the impact to existing compilers and installed software systems. This program
is very controversial and is expected to drag on past the planned September 1990 release date. If
implemented, the Ada 9X initiative offers the possibility that real-time Ada may be run "bare
machine," without the need for an OS kernel to implement executive functions. This capability offers
significant advantages since reliance upon custom software for a real-time environment would be
virtually eliminated. An alternative approach, promoted by the Software Engineering Institute (SEI),
is to define a standard for a run-time kernel that supports the current ANSI/MIL-STD-l815A. The
kernel would provide all of the real time features, and would also eliminate the need for a custom,
proprietary OS kernel to support real-time Ada usage.

53.2 Operating System Functions

Operating system functions are critical in determining and controlling real-time simulation
performance. Typically, real-time operating systems support dynamic process manipulation, inter-
process communication, task scheduling, and time slice management. Dynamic process manipulation
allows the OS to control task prioritization, blocking/removal of tasks from execution, and task
creation. Inter-process communication controls the way in which tasks access memory. Some OSs
implement resource locking to allow only one task at a time to access given memory locations. Real-
time task scheduling is implemented on a cyclical, frequency synchronized basis. This approach
ensures rigid task queuing for deterministic system behavior. To enforce simulation determinism,
the OS may also manage the time slice events allocated for each process. The OS effectively
manages the run-time environment by monitoring the time slice performance and manipulating tasks
to ensure fault tolerance and real-time performance.

Efforts are currently underway to define and standardize the interfaces between an operating
system and the Ada language. AJPO is working on defining the run-time interface to the OS through
the Ada Real-time Environment Working Group (ARTWEG). The Army is currently working on
an IEEE standard (P-100 3.5) that will define the interfaces between POSIX and Ada. Portable
Operating System for Unix (POSIX) hopes to standardize the interface between an application and
an operating system. POSIX currently applies to the UNIX, VMS, and OS/2 operating systems.

5 3 3 Ada Programming Support Environments

Ada programming support environments provide the tools and rules that programmers will
use during software development and test. The SSE contractor is providing the APSE that will be
utilized by the SSTF. The SSTF is just one of the many target users of the SSE tools and rules, and
as such, the special APSE needs for simulation application development may be overlooked. The
following discussion is intended to identify some of the issues surrounding APSE usage for real-time
simulation software development.

533.1 Simulation Oriented CASE

Many Ada programming support environments exist, each offering different types of CASE
tools. Industry standard CASE interfaces, methodologies, and information formats do not yet exist.
The National Institute of Standards & Technology is currently working to define a government
standard for an Integrated Software Engineering Environment. This standard is intended to promote
commonality among the various CASE tools oriented toward embedded system software
development. Many of the special needs of real-time simulation are not addressed by current CASE
tools. CASE tools are needed for simulation that allow the software engineer to model and validate

33

designs based on functional and physical real-time requirements. To provide this capability, CASE
tools need to incorporate real-time oriented modeling notations and timing flow considerations that
address distributed, parallel system operations. Without these important real-time features, CASE
usage will not offer the expected productivity benefits, and may actually impede the real-time
software development process.

5334 Real-time Debugging Tools

The APSE environment must provide for the capability to quickly debug and correct real-
time simulation errors and run-time problems. The real-time debugger should not be intrusive, in
that some APSE debuggers can potentially alter the behavior of real-time simulation programs. In
addition to monitoring program performance symbolically (i.e. by symbol names rather than machine
addresses), the debugger should be capable of providing graphic information to the user for memory
analysis, symbol data logging, and processor load balancing. These features are especially critical for
multiprocessor environments that are tightly coupled through interconnected memory.

Ada exception handling constructs are very limited due to the small number of predefined
exceptions identified and the wide range of conditions that cause these exceptions to be invoked.
These limitations reinforce the need for powerful run-time debugging tools.

5.4 Processing Technologies

In addition to performing core simulation computing tasks, the SSTF computer complex will
need the flexibility of accommodating many different types of processing technologies. Training
system effectiveness will stem from the SSTF's ability to create an artificial reality that is convincing
and effective for transferring ground based lessons and experiences to on-orbit operations. To
accomplish this goal, complex space station embedded systems incorporating advanced automation
oriented technologies will need to be provided for in the SSTF design. As discussed previously in
Section 4.0, embedded systems featuring artificial intelligence, adaptive control, or machine vision
may need to be accommodated through either stimulation of flight equivalent hardware executing
the embedded system software, emulation of the embedded system with commercially available
special purpose processors, or functional simulation of the embedded system within the host
simulation computers. The following sections discuss at a high level the technical issues associated
with these special purpose processing technologies and the impact of their incorporation in the SSTF
computer complex concept.

5.4.1 Symbolic Computing

Symbolic computing, used heavily within the Artificial Intelligence (AI) community, is based
on data-driven programming which embraces data flow machine type architectures. Symbolic
programs tend to be heterogenous and diverse, involving a variety of mechanisms and conceptual
tasks within a single program. For example, the manager of an autonomous space vehicle will
perform a variety of tasks such as hierarchical classification, signal interpretation, hypothesis
formation, matching, and logical inference in addition to conventional numerical tasks.

The large and complex problems typically addressed by symbolic computing utilize these
unique techniques to achieve the needed levels of structure and abstraction to make the problems
manageable. The knowledge representations they use require large and uniform address space within
the computer. The computing style also tends to create large numbers of temporary data structures.
This means that the system must support garbage collection, the process of reclaiming unused storage
at a rate rapid enough to always provide for free, symmetrical storage. While these applications
can be developed for traditional machine architectures, significant performance improvements can
be achieved by using unique machine architectures. Symbolic computers view each computer word

34

as containing a data field and one or more tag fields. The tag fields are used to identify object type,
to delineate their extent in memory, and to reclaim unused storage efficiently. Symbolic computers
are usually microcoded to accommodate the tag processing task, but otherwise resemble conventional
stack-oriented computers.

5.42 Vision Computing

Visual image processing avionics, otherwise known as "visionics" systems, provide an on board
means of sensing, processing, and analyzing real-time imagery that is generated by a vision system.
Visionics systems allow man and machines to perceive objects and spatial relationships that exist in
the vision system's field of regard, Vision computing systems are typically high speed numeric
processors that operate on vectorized data sets describing the intensity/color of individual picture
elements (pixels) that make up the sensed image. Real-time image processing calls for the visionics
system to accommodate video rate communication speeds. For TV displays, this rate is almost 63
Mb/sec (512h x 512v x 8 bits x 30 Hz). Current visionics systems typically sense and process around
2 million pixels per second (256h x 256v x 30Hz). The sensor image is then reformatted to match
the operator (TV) display characteristics. Processing all pixels at real-time speeds is a tremendous
computing task. Visionics systems minimize the need for computing power by performing operations
only on a designated area of interest within the field of view. For example, an algorithm requiring
30 instructions per pixel can be performed at video speeds on a 50 x 50 pixel area of interest with
a 2.5 Mips class machine (50h x 5Ov x 30Hz x 30 instr. = 2.25 Mips). The SSTF host simulation
computer complex must be capable of providing the functionality that on board visionics systems
provide for space station operations. Typically, this functionality can be provided for simulation
through the use of dedicated image processing equipment capable of capturing and analyzing visual
scene data from a digital image generator (DIG) in real-time. Many of these systems are available
that communicate with host computing systems via standard bus interfaces such as VME.

5.5 Visual System Technologies

The SSTF computer complex is also required to support synthetic image generation
equipment that will provide dynamic out the window visual imagery and correlated sensor video for
a variety of simulated space systems that require operator interaction. The interfaces between these
visual system devices and the host simulation computer complex should be very flexible and adaptable
to ensure that the SSTF computer resources are utilized in the most efficient manner to support
stand-alone, combined, integrated, and joint integrated training sessions. The following discussion
focuses on two aspects of visual system integration within the SSTF, digital image generation and
digital image processing. Specific technical issues that must be considered in planning for the
integration of these visual system technologies into the SSTF concept are presented at a high level.

5.5.1 Digital Image Generation

DIG systems are now available that support multiple concurrent eyepoint access to a common
database. This is a necessary capability to ensure cue correlation, especially during multicrew
training scenarios. Multiple eyepoint access to a common database is required to support training
activities such as handing objects back and forth between independently controlled, cooperating
manipulators; as in passing a simulated object between the SMTF and the SSTF. The key DIG
feature for consideration is database compatibility. Multiple copies of scene databases to support
varying fidelity viewing requirements is not desirable due to the additional operations support
required and the potential for trainer-to-trainer correlation problems. Ideally, the image generation
equipment utilized within the SSTF should be capable of sharing a common database format by
either preprocessing the common database during mission generation or by constructing the necessary
scene content at run-time based on embedded parametric data.

35

A major DIG consideration is the ability of the DIG to correlate with CAD/CAE based
models as discussed in Section 4.0. Research needs to be pursued in the compatibility issues
associated with commercial graphics descriptors and visual scene database descriptors commonly used
within the simulation industry. Figure 5-10 illustrates the critical role that the visual system plays in
providing an integrated simulation environment for robotics training. Other considerations deal with
the ability of the visual system to feed back ray tracing data for robotic end effector range and
contact sensors. When given a ray location and orientation within the database, the visual system
traces the ray to identify the point at which the ray intersects a database object. Current flight
simulator visual systems provide this range feedback capability in a limited form (around 30 range
requests per second) for radar altimeter readings and weapon impact positioning. The demand for
these services within the SSTJ? will be much greater due to the need to simulate several sensors on
multiple manipulator arms.

The host simulation computer configuration should also be flexible in its ability to drive the
visual system based on selected training mode @e. stand-alone, combined, etc.). For reliability and
growth aspects, it would be desirable for the visual eyepoint interface to be provided by any of the
host simulation computing nodes, rather than relying upon a dedicated node for visual system
interfacing. This multi-channel approach would allow the computing resources to be flexibly allocated
as a function of training mode requirements, as opposed to being allocated according to fixed
hardware dependencies.

53.2 Digital Image Processing

Digital image processing technology provides for field- and frame-based analysis of video
format images. Digital image processing is a central component of robotic machine perception
systems that analyze and act on the robot task space. The machine perception system searches for
recognizable objects within the sensor field of view, tracks operator designated objects, and provides
image based navigation signals for manipulator path dynamics. Integration of digital image
processing technologies into the SSTF simulation environment should be anticipated to support the
training requirements for robotic manipulator operation. The SSTF host simulation computer
concept should be capable of accommodating this technology to provide for adequate robotic systems
training.

36

-
D
M
S

K
i
1

-

Figure 5-10
Rob0 t ics/Visual System Integra tion

37

6.0 Concept Objectives and Technology Assessment

Many of the state-of-the-art simulation technologies previously discussed hold promise for
solving many of the simulation challenges discussed in Section 4.0. Application of these technologies
to manned space flight simulation and training will better enable NASA to achieve established goals
and objectives concerning the operation of SSTF resources. In assessing the feasiblity for
incorporating these technologies in the SSTF concept, many issues must be addressed concerning
embedded system simulation and alternative host simulation computer configurations. These issues
are presented below.

6.1 SSTF Computing Objectives

The SSTF host simulation computer complex must be capable of accommodating all of the
computing needs required to provide accurate, near real-world training scenarios. The skills and
lessons learned in the SSTF should be directly transferable to space flight operations, with minimal
re-learning necessary to overcome ground based training deficiencies. Achievement of this goal
requires that the host computer complex be capable of interfacing with a variety of special purpose
processors that are dedicated to performing a specific function such as a knowledge based system
or visionics system. In many cases, the appropriate level of system functionality may only be achieved
by stimulating or emulating flight equivalent processors or special purpose processors executing flight
software based algorithms. Special purpose processor interfacing will most likely be through a MIL-
STD-1553 type mux bus or VME type interface. The host computer complex should offer many
possible means of accommodating these interfaces, rather than relying upon a dedicated 1/0 chassis
for all external communications. Distributed and open 1/0 interfacing will allow the computer
resources to be utilized in the most effective manner for accomplishing simulation objectives, without
having to resort to fixed, dedicated resources for specific training situations.

The host simulation computer resources must also be capable of quick reconfiguration in
terms of run-time software loads and mission unique payload accommodation that may call for
special purpose processing. The processing environment must be easily configurable between
concurrent stand-alone and combined/integrated training activities.

Similarly, the host simulation computer resources should be flexibly configured to support
the necessary training requirements asssociated with each training mode (i.e. stand-alone, combined,
integrated, and joint integrated). These training requirements may involve multiple DIG visual
channels to support various training scenarios involving simultaneous, independent systems operation.
To support this mix and match capability among trainer stations for part-task training, it is
recommended that the host computer resources be flexible in the ability to drive visual interface
channels from any computing node.

The SSTF concept calls for variable embedded system fidelity based on the selected training
mode. Part-task, stand-alone training sessions call for medium fidelity, single system oriented
response, while combined full-task training sessions call for high fidelity, full systems interaction
across all space station systems. To provide for these capabilities, the multi-computer host simulation
resources should be easily reconfigurable to support multiple concurrent part-task sessions or
combined full-tasks sessions. Conceptual simulation technologies may prove useful in determining
system designs that support multiple types of training sessions. One approach is to utilize common
interfaces (Ada packages) between simulation processes (Le. GN&C avionics, TCS sensors, etc.)
but utilize different programs (Ada bodies) depending upon the specific training scenario that is
selected. A high fidelity program would offer full systems signature performance while a low fidelity
program could support procedures training for part-task sessions. When a particular training mode
and trainer configuration is selected, the appropriate program (Ada body) would be linked with the
standard interface (Ada package) and the simulation process could then be installed on the

38

appropriate computing node within the host simulation computer complex. This approach would
allow the computing resources to be dynamically configured and efficiently utilized as a function of
the training requirements. For example, in stand-alone training mode, each node of the multi-
computer host could be automatically configured in terms of connectivity and software load to
support the selected training scenario. Selection of combined training mode could then be
accomplished by automatically reconfiguring the nodes of the multi-computer host into a single node
system, with the appropriate connectivity switching and software load to support full systems
interaction.

6 3 Architecture Assessment

Issues associated with the architectural technologies discussed in Section 5.0 must be
addressed when evaluating possible host simulation computer configurations. The real-time
computer resources must be capable of not only providing an efficient Ada run-time environment,
but must also be capable of accommodating special purpose processors, visual system interfaces,
inter-facility real-time data communications, and be configurable into at least two independent
processing nodes to support concurrent part-task training sessions. In addition, the computer
resources must offer efficient economies of scale in terms of processing power and communications
bandwidth expandability. Provisions should be available for doubling these capabilities without
serious impact to the initial hardware/software configuration.

These various needs may best be fulfilled by a distributed processing simulation architecture
as opposed to a monolithic, traditional mainframe type architecture. A distributed, multi-node
architecture offers significant advantages in terms of reconfigurability, scalability, redundancy, and
fault tolerance, Distributed architectures for real-time simulation applications are now being
supported by the computer industry that offer unprecedented computing power and communications
flexibility, and they provide an attractive solution for the host simulation computing needs of the
SSTF.

Although a distributed, multi-processor architecture is clearly desirable, there are still many
choices that must be made in configuring a distributed system to meet SSTF functional goals and
operational objectives. Processor integration and operating system software are two crucial areas
that will, in large part, determine the ability of the SSTF student training environment to meet
design goals for life cycle cost minimization, evolution and growth, reconfiguration, and upward
technology compatibility.

The method by which processors are integrated to form computing nodes is critical in the
ability of the computer to provide scalable real-time simulation services. Loosely coupled networking
methods allow communications over long distances between dissimilar processors, but do not as yet
adequately support time critical, man-in-the-loop applications with dynamic system configurations
and unknown message processing demands. The SCRAMNet method provides the best of both the
loosely coupled and tightly coupled approaches, but currently is limited in the shared memory area
size that can be supported among several network nodes. Other tightly coupled memory linkage
methods are designed to support the needs of real-time simulation, but limit system configuration
flexibility due to their proprietary designs and lack of standardization. But the advantages of a
tightly coupled distributed computing system far outweigh the disadvantages. Distributed computing
systems offering mainframe class performance are available today that are based on commercially
supported CPUs with a clear migration path, high speed direct memory communications, and real-
time operating system features. It is highly recommended that these systems be investigated further
for application in advanced manned space flight simulation systems such as the SSTF.

39

The operating system software that manages the real-time computational performance is
another critical area in determining the computer system’s suitability for scalable real-time simulation
applications. Many proprietary real-time operating systems are commercially available that have
successfully proven that Ada can be used in real-time applications. Anchoring on one of these
proprietary systems that have large amounts of machine-dependent and non-portable code limits
flexibility and does not answer the call to reduce the use of custom simulation solutions. The
industry efforts under way to standardize the way Ada is used in real-time applications should be
closely followed and evaluated in conjuction with the evaluation of architectures.

40

Appendix A

References

REFERENCES

13)

14)

15)

17)

Space Station Training Facility, MSD Project Review, May 4, 1989

SSTF Contrast, 1986 Cost Commit vs. Current Concept, May 11, 1989

SSTF Conceptual Design Document, First Draft, August 1988

JSC 32060, SSTF Level A Simulation Requirements, June 30, 1988

SSTF Development Plan, Delivery Summary, July 27, 1989

SSTF Development Plan, Appendix A, SSTF Model Requirements

SSTF Development Plan, Appendix B, SSTF SLOC Requirements

Memo from Doug Morris, April 24, 1989; Simulation Model Development Plans

Memo from Doug Morris, Attachment A; Special Requirements for Simulation Models Used
in Training

OADP Specification and Statement of Work, February 22, 1989

SSTF DMS Kit Outfitting, Herbert Long, June 1989

Data Interfaces to the Space Station Information System, Richard Carper, Fritz Schultz,
IEEE 1988

The Evolution of the Mission Control Center, Michael Kearney, Proceedings of the IEEE
Vol. 75, No. 3., March 1987

Space Station Data Management System Architecture, William Mallary, Virginia Whitelaw,
Proceedings of the IEEE Vol. 75, No. 3, March 1987

An Overview of Space Station Operations, James Walker, Robert Anderson, SP-687, Society
of Automotive Engineers, October 16, 1986

An Environment for the Integration and Test of the Space Station Distributed Avionics
Systems, Thomas Barry, Terrance Scheffer, IEEE AES Magazine, November 1988

Space Station Data Management System: A Common GSE Test Interface for Systems Testing
and Verification, Pedro Martinez and Kevin Dunn, Proceedings of the IEEE, Vol. 75, No. 3,
March 1987

NASA Space Station Effort Drives Expert Systems Research at Johnson, AW&ST, April 22,
1985

Testing and Validation in Artificial Intelligence Programming, R.B. Purves et al, SPIE Vol.
851 Space Station Automation III, 1987

A- 1

19) System Autonomy Hooks and Scars for Space Station, SA. Starks and D.W. Elizandro, SPIE
Vol. 851 Space Station Automation III, 1987

20)

2 1)

Knowledge-Based Simulation for Aerospace Systems, Ralph W. Will et al, Machine
Intelligence and Autonomy for Aerospace Systems, 1988

Machine Intelligence and Crew-Vehicle Interfaces, Robert G. Eggleston, Machine Intelligence
and Autonomy for Aerospace Systems, 1988

Vision Sensing Techniques in Aeronautics and Astronautics, E.L. Hall, Machine Intelligence
and Autonomy for Aerospace Systems, 1988

22)

23) Supervisory Control of Telerobots in Space, Thomas Sheridan, Machine Intelligence and
Autonomy for Aerospace Systems, 1988

24) Manned Spacecraft Automation and Robotics, Jon D. Erickson, Proceedings of the IEEE,
Vol. 75, No. 3, March 1987

25) Telerobotics for Space Applications, W.S. Otaguro et al, IEEE AES Magazine, November
1988

26) NASA Autonomy and Robotics Technology Program, Lee B. Holcomb, Melvin D.
Montemerlo, IEEE AES Magazine, April 1987

Space Robotics in the OS, Carl F. Ruoff, Aerospace America, August 1989. 27)

28) West Germany’s First Space Robot, Gerd Hirzinger, Aerospace America, August 1989.

29) Ground Operations of Space-Based Telerobots Will Enhance Productivity, Wayne R. Schober,
IEEE NAECON 1988

30) The Flight Telerobotic Servicer Project and Systems Overview, Harry G. McCain and James
F. Andary, IEEE NAECON, 1988

31) Servo Level Algorithms for the NASREM Telerobot Control System Architecture, SPIE Vol.
851 Space Station Automation III (1987)

32) Orbital Navigation, Docking, and Obstacle Avoidance, SPIE Vol. 851 Space Station
Automation III (1987)

33) Automation and Robotics and Related Technology Issues for Space Station Servicing, Helmut
P. Cline, SPIE Vol. 851 Space Station Automation III 1987

34)

35)

Telerobot Experiment Concepts in Space, Lyle M. Jenkins, SPIE Vol. 851 Space Station
Automation III (1987)

Architecture For Dynamic Task Allocation in a Man-Robot Symbiotic System, Lynne E.
Parker and Francois G. Pin, SPIE Vol. 851 Space Station Automation I11 (1987)

Telerobot Operator Control Station Requirements, Edwin Kan, SOAR 1988 36)

A-2

37)

38)

39)

40)

41)

42)

43)

44)

45)

46)

47)

57)

Time Delayed Operation of a Telerobot via Geosynchronous Relay, Brian Wilcox, SOAR
1988

CAD Model Based Vision for Space Applications, Linda Shapiro, SOAR 1988

Spacebome VHSIC Multiprocessor System for AI Applications, Henry Lum, Howard Shrobe,
John Aspinall, SOAR 1988

Automation of the Space Station Core Module Power Management and Distribution System

Real-time Simulation for Space Station, Robert St. John et ai, Proceedings of the IEEE,
March 1987

Shuttle Mission Training Facility Upgrade, Kurt Frevert, Riley McCafferty, ITEC, November
30, 1987

The Shuttle Mission Simulator-From Design Concepts to an Operational Training Device,
Pete Sivillo, Riley McCafferty, ITEC, November 19, 1985

A Computer Systems Upgrade for the Shuttle Mission Training Facility, Ankur Hajare,
Patrick Brown, AIAA 1988

Reducing the Risks of Using Ada Onboard the Space Station, Terry Humphrey, IEEE A E S
Magazine, November 1988

Ada Adoption Handbook, John Foreman, John Goodenough, CMU/SEI-87-TR-9, May 1987

Experience in Implementing an Ada Real-Time Program for Flight Simulation Operation,
Grecco Myren, ITEC, 1987

Lessons Leamed from the Ada Simulator Evaluation Program, Jerry Hendrix, ITEC, 1987

Hybrid Ada/Fortran Systems for Flight Simulation, Vincent' Rich, ITEC 1987

What Every Good Manager Should Know about Ada, Judy Bamberger, NAECON 1987

An Ada Language Software Architecture for Distributed Simulation Systems, Andrew Fuller,
IEEE NAECON 1988

Strategic Computing: A Status Report, IEEE Spectrum, April 1987

A Unified Approach to Real-Time Systems Integration, R & D, March 21, 1989

Computer System Hardware, Steve Seidensticker, Flight Simulation Update, 1988

Parallel Compilers Are Coming Just in Time, Electronics, November 1988

Focusing Real-Time Systems Analysis on User Operations, Michael Deutsch, IEEE Software,
1988

A Comparison of 12 Parallel Fortran Dialects, Alan Karp, Robert Babb, IEEE Software,
September 1988

A-3

58) Programming a Hypercube Multicomputer, Sanjay Ranka et al, IEEE Software, September
1988

59) Modular, Functionally Distributed Microprocessor-Based Simulation, Michael Ash, ITEC
1985

60) Distributed Processing for Complex Simulators, David Parkinson, lTEC 1985

61) A Parallel Processor Alternative to the Modular Simulation Architecture, Edward Kulakowski,
David Gamer, ITEC 1986

62)

63)

Multiple Microcomputer Architectures, Charles Pope et al, ITEC 1986

Real-Time Simulators: Dealing with their Growing Complexity, Steve Seidensticker, ITEC
1985

64) Modular Simulators: Is a Local Area Network Sufficient?, Donald L. Johnston, NAECON
1985

65) Modular Simulators: A Comprehensive Unified Architecture, Steve Seidensticker, NAECON
1985

66)

67)

Space Station Training Facility Concept of Operations, JSC 32034, August 4, 1988

Distributed Ada Real-Time Kernel, Judy Bamberger and Roger Van Scoy, IEEE 1988.

68) International Workshop on Real-The Ada Issues, Volume VII, Number 6, Special Interest
Group on Ada (SIGAda), June 1988

	1.0 Introduction
	1.1 Document Background
	1.2 Document Purpose
	1.3 Document Overview

	2.0 SSTF Concept Definition
	2.1 IntegralDMS Role
	2.2 S/W Standardization
	2.3 Single Family of Computers
	2.4 SSE Engineering Model Incorporation
	2.5 Training Modes
	2.6 Computer Resource Requirements

	3.0 SSTF Concept Rationale
	3.1 Decrease Reliance on Custom Simulation Solutions
	3.2 Provide Realistic System Responses for Mission Rehearsal
	3.3 Provide Environment for Training Freedom Station Ground/Space Team

	4.0 SSTF Systems Simulation Challenges for Concept Development
	4.1 Concurrent/Independent Crew Training
	Crew Vehicle Interface Challenges
	4.3 Embedded Space Systems Simulation Challenges
	4.3.1 Embedded Avionics Systems Architecture
	4.3.2 Embedded Knowledge Based Systems/Autonomous Systems
	4.3.3 Robotics Technology/Telerobotics
	Predictive Display & Control
	4.3.3.2 CAD/CAE Correlated Sensory Perception

	5.0 Enabling Simulation Technologies
	5.1 Conceptual Technologies
	5.1.1 Modular Simulation Concepts
	5.1.2 Distributed Processing for Modular Simulation
	5.1.3 Integrated Environmental Modeling

	5.2 Architectural Technologies
	5.2.1 Loosely Coupled Networking
	5.2.1.1 Ethernet
	5.2.1.2 Token Ring
	5.2.1.3 VME Bus and Multibus
	5.2.1.4 Real-Time Networks

	5.2.2 Tightly Coupled Memory Linkage
	5.2.2.1 Broadcast Memory
	5.2.2.2 Shared Memory
	5.2.2.3 Crossbar Memory

	5.2.3 Processor Selection
	5.2.3.1 Processor Architectures
	5.2.3.2 Data Flow Machines
	5.2.3.3 Parallel Processing

	5.2.4 Reliability and Maintainability

	5.3 Software Technologies
	5.3.1 Real-time Ada
	5.3.2 Operating System Functions
	5.3.3 Ada Programming Support Environments
	5.3.3.1 Simulation Oriented CASE
	5.3.3.2 Real-time Debugging Tools

	5.4 Processing Technologies
	5.4.1 Symbolic Computing
	5.4.2 Vision Computing

	5.5 Visual System Technologies
	5.5.1 Digital Image Generation
	5.5.2 Digital Image Processing

	6.0 Concept Objectives and Technology Assessment
	6.1 SSTF Computing Objectives
	6.2 Architecture Assessment

	Figure 4-1 Aerospace Avionics Architecture
	Figure4-2 GN&C/DMSArchitecture
	Figure 4-3 Robotics/DMS Integration
	Figure 5-1 Space Station Modular Simulation Concept
	Figure 5-2 Simulation Computer System
	Figure 5-3 Integrated Environmental Modeling Concept
	Figure 5-4 Operational Computer System Concept
	Figure 5-5 Typical LAN Topologies
	Figure56 FDDITokenRing
	Figure 5-7 mica1 Broadcast Memory Configuration
	Figure 5-8 Typical Shared Memory Configuration
	Figure 5-9 Typical Crossbar Memory Configuration
	Figure 5-10 Robotics/Visual System Integration
	SSTF Conceptual Design Document First Draft August
	JSC 32060 SSTF Level A Simulation Requirements June
	IEEE

	Systems Thomas Barry Terrance Scheffer IEEE AES Magazine November
	and Verification Pedro Martinez and Kevin Dunn Proceedings of the IEEE Vol 75 No

	NASA Space Station Effort Drives Expert Systems Research at Johnson AW&ST April

